Матрица линейного оператора, строение матрицы.

Покажем, что образы базисных векторов должны быть расположены в столбцах матрицы, что именно при таком строении матрицы умножение её на вектор-столбец будет задано корректно, то есть оно будет действительно отображать базисные векторы в их образы.

Пусть в нашем примере базисные векторы (1,0) и (0,1) переходят в (1,3) и (2,4). Построим матрицу, где это - столбцы, и умножим её на (1,0) и (0,1) поочерёдно:

Умножим на : ,

на : .

Обнаружили, что базисные векторы при умножении на квадратную матрицу отобажаются именно в такие векторы, координаты которых записаны в 1 и 2 столбце матрицы!

Строение матрицы оператора: столбцы есть образы базисных векторов при данном отображении, то есть столбец номер матрицы оператора содержит вектор .

Итак, если задан какой-либо закон, по которому отображаются векторы, то чтобы задать матрицу оператора, надо найти, куда отображаются базисные векторы. Для примера, найдём матрицу оператора поворота на 90 градусов.

, . Запишем в 1-й и 2-й столбец эти образы: .

Действие оператора на любой вектор задаётся матрицей так:

- любой вектор поворачивается на 90 градусов.

Поворот на произвольный угол:

Расстояния r1 и r2 здесь равны и . Красным показаны образы базисных векторов. Получаем матрицу .

При как раз и получится . А вот при матрица будет иметь вид , и действительно, умножение на такую матрицу переводит любой вектор в , а при повороте на каждый вектор как раз и должен повернуться и стать противоположным исходному.

Как построить матрицу по общему виду функции, например

Отобразим базис: , .

Запишем в столбцы: .

Образ произвольного вектора как раз и получается таким, как требуется в изначальной формуле:

Оператор проекции на ось Ох.

Базисный вектор (1,0) остаётся на своём месте, а (0,1) отображается в (0,0). Проекции на ось х соответствует матрица .

* Свойство: L(0)=0. Действительно, пусть 0 вектор задан в виде . Тогда: .

Получается, что только растяжение и поворот и их комбинации есть линейные отображения, а параллельный перенос (сдвиг) не входит в это понятие, ведь он не сохраняет 0-вектор на своём месте. Среди отображений 1-мерного пространства получается, что линейным отображением является лишь y=kx, но не y=kx+b.

k(x+y)= k(x) + k(y), но для y=kx+b сумму так раскрыть уже нельзя, потому что k(x+y) +b = k(x) + k(y) +b , а не (k(x) +b) + (k(y) +b).


4790353255506680.html
4790390262162127.html
    PR.RU™